cqlengine Documentation
Release 0.21.0

Blake Eggleston, Jon Haddad

April 24, 2016






Contents

1 Download 3
2 Contents: 5
2.1 Models . . . .. e e e e e e e e 5
2.2 Making QUeries . . . . . . . . e e e e e 12
23 Columns . . . . e e e 21
24 COonnection . . . . . v v vt vt e e e e e e e e e e e e e e 24
2.5 Managing Schemas . . . . . . . .. L e e 25
2.6 External Resources . . . . . . . . . . . e e e 25
2.7 Related Projects . . . . . . . e e e e 26
2.8 Third party integrations . . . . . . . . i i e e e e e e e e e e e e e e e e e e e e e e 26
2.9 Development . . . . . . . e e e e e e e e e e e e e e e e e e 27
2.10 Frequently Asked Questions . . . . . . . . . . .. L e e 28
3 Getting Started 29
4 Indices and tables 31
Python Module Index 33







cqlengine Documentation, Release 0.21.0

Users of versions < (.16, the default keyspace ‘cqlengine’ has been removed. Please read this before upgrading:
Breaking Changes

cqlengine is a Cassandra CQL 3 Object Mapper for Python

Getting Started

Contents 1



cqlengine Documentation, Release 0.21.0

2 Contents



CHAPTER 1

Download

Github
PyPi



https://github.com/cqlengine/cqlengine
https://pypi.python.org/pypi/cqlengine

cqlengine Documentation, Release 0.21.0

4 Chapter 1. Download



CHAPTER 2

Contents:

2.1 Models

Users of versions < 0.4, please read this post before upgrading: Breaking Changes A model is a python class
representing a CQL table.

2.1.1 Examples

This example defines a Person table, with the columns first_name and last_name

from cglengine import columns
from cglengine.models import Model

class Person (Model) :
id = columns.UUID (primary_key=True)
first_name = columns.Text ()
last_name = columns.Text ()

The Person model would create this CQL table:

CREATE TABLE cglengine.person (
id uuid,
first_name text,
last_name text,
PRIMARY KEY (id)

Here’s an example of a comment table created with clustering keys, in descending order:

from cglengine import columns
from cglengine.models import Model

class Comment (Model) :
photo_id = columns.UUID (primary_key=True)
comment_id = columns.TimeUUID (primary_key=True, clustering_order="DESC")
comment = columns.Text ()

The Comment model’s create table would look like the following:

CREATE TABLE comment (
photo_id uuid,
comment_id timeuuid,



https://groups.google.com/forum/?fromgroups#!topic/cqlengine-users/erkSNe1JwuU

cqlengine Documentation, Release 0.21.0

comment text,
PRIMARY KEY (photo_id, comment_id)
) WITH CLUSTERING ORDER BY (comment_id DESC)

To sync the models to the database, you may do the following:

from cglengine.management import sync_table
sync_table (Person)
sync_table (Comment)

2.1.2 Columns

Columns in your models map to columns in your CQL table. You define CQL columns by defining column
attributes on your model classes. For a model to be valid it needs at least one primary key column and one

non-primary key column.

Just as in CQL, the order you define your columns in is important, and is the same order they are defined

in on a model’s corresponding table.

2.1.3 Column Types

Each column on your model definitions needs to an instance of a Column class. The column types that

are included with cqlengine as of this writing are:
* Bytes
* Ascii
e Text
e Integer
e BigInt
* DateTime
e UUID
e TimeUUID
* Boolean
e Float
* Decimal
e Set
e List

* Map

Column Options

Each column can be defined with optional arguments to modify the way they behave. While some column
types may define additional column options, these are the options that are available on all columns:

Chapter 2. Contents:




cqlengine Documentation, Release 0.21.0

primary key If True, this column is created as a primary key field. A model can have multiple
primary keys. Defaults to False.

In CQL, there are 2 types of primary keys: partition keys and clustering keys. As with CQL, the first
primary key is the partition key, and all others are clustering keys, unless partition keys are specified
manually using partition_key

partition_key If True, this column is created as partition primary key. There may be many partition
keys defined, forming a composite partition key

clustering order ASC or DESC, determines the clustering order of a clustering key.
index If True, an index will be created for this column. Defaults to False.

db_field Explicitly sets the name of the column in the database table. If this is left blank, the column
name will be the same as the name of the column attribute. Defaults to None.

default The default value for this column. If a model instance is saved without a value for this column
having been defined, the default value will be used. This can be either a value or a callable object
(ie: datetime.now is a valid default argument). Callable defaults will be called each time a default is
assigned to a None value

required If True, this model cannot be saved without a value defined for this column. Defaults to
False. Primary key fields always require values.

static Defined a column as static. Static columns are shared by all rows in a partition.

2.1.4 Model Methods

Below are the methods that can be called on model instances.

class cglengine.models.Model (**values)
Creates an instance of the model. Pass in keyword arguments for columns you’ve defined on the model.

Example

#using the person model from earlier:
class Person (Model) :
id columns.UUID (primary_key=True)
first_name = columns.Text ()
last_name = columns.Text ()

person = Person(first_name='Blake', last_name='Eggleston')
person.first_name #returns 'Blake'
person.last_name #returns 'Eggleston'

save ()
Saves an object to the database

Example

#create a person instance

person = Person(first_name='Kimberly', last_name='Eggleston')
#saves it to Cassandra

person.save ()

delete ()
Deletes the object from the database.

batch (batch_object)
Sets the batch object to run instance updates and inserts queries with.

2.1. Models 7




cqlengine Documentation, Release 0.21.0

timestamp (timedelta_or_datetime)
Sets the timestamp for the query

ttl (1tl_in_sec)
Sets the ttl values to run instance updates and inserts queries with.

if not_exists()
Check the existence of an object before insertion. The existence of an object is determined by its primary
key(s). And please note using this flag would incur performance cost.

if the insertion didn’t applied, a LWTException exception would be raised.
Example
This method is supported on Cassandra 2.0 or later.

iff (**values)
Checks to ensure that the values specified are correct on the Cassandra cluster. Simply specify the col-
umn(s) and the expected value(s). As with if_not_exists, this incurs a performance cost.

If the insertion isn’t applied, a LWTException is raised

update (**values)
Performs an update on the model instance. You can pass in values to set on the model for updating, or you
can call without values to execute an update against any modified fields. If no fields on the model have
been modified since loading, no query will be performed. Model validation is performed normally.

It is possible to do a blind update, that is, to update a field without having first selected the object out of
the database. See Blind Updates

get_changed_columns ()
Returns a list of column names that have changed since the model was instantiated or saved

2.1.5 Model Attributes

Model._ abstract_
Optional. Indicates that this model is only intended to be used as a base class for other models. You
can’t create tables for abstract models, but checks around schema validity are skipped during class
construction.

Model._ table_name
Optional. Sets the name of the CQL table for this model. If left blank, the table name will be
the name of the model, with it’s module name as it’s prefix. Manually defined table names are not
inherited.

Model.__ keyspace_
Sets the name of the keyspace used by this model.

Prior to cqlengine 0.16, this setting defaulted to ‘cqlengine’. As of 0.16, this field needs to be
set on all non-abstract models, or their base classes.

Model._default_ttl
Sets the default ttl used by this model. This can be overridden by using the tt1 (ttl_in_sec)
method.

2.1.6 Table Polymorphism

As of cqlengine 0.8, it is possible to save and load different model classes using a single CQL table. This
is useful in situations where you have different object types that you want to store in a single cassandra

8 Chapter 2. Contents:



cqlengine Documentation, Release 0.21.0

Trow.

For instance, suppose you want a table that stores rows of pets owned by an owner:

class Pet (Model) :
__table_name__ = 'pet'
owner_id = UUID (primary_key=True)
pet_id = UUID (primary_key=True)
pet_type = Text (polymorphic_key=True)
name = Text ()

def eat (self, food):
pass

def sleep(self, time):
pass

class Cat (Pet):
__polymorphic_key = 'cat'
cuteness = Float ()

def tear_up_couch(self):
pass

class Dog (Pet) :
__polymorphic_key__ = 'dog'
fierceness = Float ()

def bark_all_night (self):
pass

After calling sync_table on each of these tables, the columns defined in each model will be added to
the pet table. Additionally, saving Cat and Dog models will save the meta data needed to identify each
row as either a cat or dog.

To setup a polymorphic model structure, follow these steps

1. Create a base model with a column set as the polymorphic_key (set polymorphic_key=True
in the column definition)

2. Create subclass models, and define a unique ___polymorphic_key__ value on each
3. Run sync_table on each of the sub tables
About the polymorphic key

The polymorphic key is what cqlengine uses under the covers to map logical cql rows to the appropriate
model type. The base model maintains a map of polymorphic keys to subclasses. When a polymorphic
model is saved, this value is automatically saved into the polymorphic key column. You can set the
polymorphic key column to any column type that you like, with the exception of container and counter
columns, although Integer columns make the most sense. Additionally, if you set index=True on
your polymorphic key column, you can execute queries against polymorphic subclasses, and a WHERE
clause will be automatically added to your query, returning only rows of that type. Note that you must
define a unique __polymorphic_key__ value to each subclass, and that you can only assign a single
polymorphic key column per model

2.1. Models 9



cqlengine Documentation, Release 0.21.0

2.1.7 Extending Model Validation

Each time you save a model instance in cqlengine, the data in the model is validated against the schema
you’ve defined for your model. Most of the validation is fairly straightforward, it basically checks that
you’re not trying to do something like save text into an integer column, and it enforces the required
flag set on column definitions. It also performs any transformations needed to save the data properly.

However, there are often additional constraints or transformations you want to impose on your data,
beyond simply making sure that Cassandra won’t complain when you try to insert it. To define additional
validation on a model, extend the model’s validation method:

class Member (Model) :
person_id = UUID (primary_key=True)
name = Text (required=True)

def validate(self):
super (Member, self).validate()
if self.name == 'Jjon':
raise ValidationError('no jon\'s allowed")

Note: while not required, the convention is to raise a ValidationError (from cglengine
import ValidationError) if validation fails

2.1.8 Table Properties
Each table can have its own set of configuration options. These can be specified on a model with the
following attributes:
Model._ _bloom_filter_fp_ chance
Model.___caching
Model._ comment_
Model.__dclocal_read_repair_chance_
Model._ default_time_to_live_
Model.___gc_grace_seconds_
Model._ index interval
Model._ _memtable_flush_period _in ms_
Model.__populate_io_cache_on_ flush_
Model.__read repair_chance_
Model.__ replicate_on_write_

Example:

from cglengine import CACHING_ROWS_ONLY, columns
from cglengine.models import Model

class User (Model) :
__caching__ = CACHING_ROWS_ONLY # cache only rows instead of keys only by defa
__gc_grace_seconds__ = 86400 # 1 day instead of the default 10 days

user_id = columns.UUID (primary_key=True)

name = columns.Text ()

10 Chapter 2. Contents:

ult



cqlengine Documentation, Release 0.21.0

Will produce the following CQL statement:

CREATE TABLE cglengine.user (
user_id uuid,
name text,
PRIMARY KEY (user_id)
) WITH caching = 'rows_only'
AND gc_grace_seconds = 86400;

See the list of supported table properties for more information.

2.1.9 Compaction Options

As of cqlengine 0.7 we’ve added support for specifying compaction options. cqlengine will only use your
compaction options if you have a strategy set. When a table is synced, it will be altered to match the
compaction options set on your table. This means that if you are changing settings manually they will be
changed back on resync. Do not use the compaction settings of cqlengine if you want to manage your
compaction settings manually.

cqlengine supports all compaction options as of Cassandra 1.2.8.

Available Options:

Model.__ compaction_bucket_high_

Model.__ compaction_bucket_low_

Model.__ compaction_max_compaction_threshold
Model.__ compaction_min compaction_threshold
Model.__ compaction_min_sstable_size_
Model.__compaction_sstable_size_in_mb_

Model.__ compaction_tombstone_compaction_interval_
Model.__compaction_tombstone_threshold

For example:

class User (Model) :

__compaction__ = cglengine.LeveledCompactionStrategy
__compaction_sstable_size_in_mb___ = 64
__compaction_tombstone_threshold__ = .2

user_id = columns.UUID (primary_key=True)
name = columns.Text ()

or for SizeTieredCompaction:

class TimeData (Model) :

__compaction__ = SizeTieredCompactionStrategy
__compaction_bucket_low__ = .3
__compaction_bucket_high__ = 2
__compaction_min_threshold = 2
__compaction_max_threshold_ _ = 64
__compaction_tombstone_compaction_interval__ = 86400

Tables may use LeveledCompactionStrategy or SizeTieredCompactionStrategy. Both options are available
in the top level cqlengine module. To reiterate, you will need to set your __compaction__ option explicitly
in order for cqlengine to handle any of your settings.

2.1.

Models 11



http://www.datastax.com/documentation/cql/3.1/cql/cql_reference/tabProp.html

cqlengine Documentation, Release 0.21.0

2.1.10 Manipulating model instances as dictionaries

As of cqlengine 0.12, we’ve added support for treating model instances like dictionaries. See below for
examples.

class Person (Model) :
first_name = columns.Text ()
last_name = columns.Text ()

kevin = Person.create (first_name="Kevin", last_name="Deldycke")
dict (kevin) # returns {'first_name': 'Kevin', 'last_name': 'Deldycke'}
kevin['first_name'] # returns 'Kevin'

kevin.keys () # returns ['first_name', 'last_name']

kevin.values () # returns ['Kevin', 'Deldycke']

kevin.items () # returns [('first_name', 'Kevin'), ('last_name', 'Deldycke')]
kevin['first_name'] = 'KEVIN5000' # changes the models first name

2.2 Making Queries

Users of versions < 0.4, please read this post before upgrading: Breaking Changes

2.2.1 Retrieving objects

Once you’ve populated Cassandra with data, you’ll probably want to retrieve some of it. This is accom-
plished with QuerySet objects. This section will describe how to use QuerySet objects to retrieve the data
you’re looking for.

Retrieving all objects

The simplest query you can make is to return all objects from a table.
This is accomplished with the . a11 () method, which returns a QuerySet of all objects in a table

Using the Person example model, we would get all Person objects like this:

all _objects = Person.objects.all()

Retrieving objects with filters

Typically, you’ll want to query only a subset of the records in your database.
That can be accomplished with the QuerySet’s . filter (\+\ ) method.

For example, given the model definition:

class Automobile (Model) :

manufacturer = columns.Text (primary_key=True)
year = columns.Integer (primary_key=True)
model = columns.Text ()

price = columns.Decimal ()

...and assuming the Automobile table contains a record of every car model manufactured in the last 20
years or so, we can retrieve only the cars made by a single manufacturer like this:

12 Chapter 2. Contents:



https://groups.google.com/forum/?fromgroups#!topic/cqlengine-users/erkSNe1JwuU

cqlengine Documentation, Release 0.21.0

g = Automobile.objects.filter (manufacturer='Tesla')

You can also use the more convenient syntax:

g = Automobile.objects (Automobile.manufacturer == 'Tesla')

We can then further filter our query with another call to .filter

g = g.filter (year=2012)

Note: all queries involving any filtering MUST define either an ‘=" or an ‘in’ relation to either a primary
key column, or an indexed column.

2.2.2 Accessing objects in a QuerySet

There are several methods for getting objects out of a queryset

* iterating over the queryset

for car in Automobile.objects.all():
#...do something to the car instance
pass

e list index

g = Automobile.objects.all()
ql[0] #returns the first result
aqll

] #returns the second result

* list slicing

g = Automobile.objects.all()
qgll:] #returns all results except the first
qgl[l:9] #returns a slice of the results

Note: CQL does not support specifying a start position in it’s queries. Therefore, accessing
elements using array indexing / slicing will load every result up to the index value requested

« calling get () on the queryset

g = Automobile.objects.filter (manufacturer="'Tesla')
g = g.filter (year=2012)
car = g.get ()

this returns the object matching the queryset

¢ calling £irst () on the queryset

g = Automobile.objects.filter (manufacturer='Tesla')
g = g.filter (year=2012)
car = g.first ()

this returns the first value in the queryset

2.2,

Making Queries 13




cqlengine Documentation, Release 0.21.0

2.2.3 Filtering Operators

Equal To

The default filtering operator.

g = Automobile.objects.filter (manufacturer="'Tesla')
g = g.filter(year=2012) #year == 2012

In addition to simple equal to queries, cqlengine also supports querying with other operators by appending
a__ <op> to the field name on the filtering call

in (__1in)

g = Automobile.objects.filter (manufacturer="'Tesla')
a g.filter(year__in=[2011, 2012])

> (__gt)

g = Automobile.objects.filter (manufacturer="'Tesla')
g.filter(year__gt=2010) # year > 2010

Q
Il

# or the nicer syntax

g.filter (Automobile.year > 2010)

>= (__gte)

g = Automobile.objects.filter (manufacturer="'Tesla')
g = g.filter(year__gte=2010) # year >= 2010

# or the nicer syntax

g.filter (Automobile.year >= 2010)

< (__1t)

g = Automobile.objects.filter (manufacturer="'Tesla')
g = g.filter(year_ 1t=2012) # year < 2012

# or...

g.filter (Automobile.year < 2012)

<= (__1lte)

g = Automobile.objects.filter (manufacturer='Tesla')
a qg.filter (year___1te=2012) # yvear <= 2012

g.filter (Automobile.year <= 2012)

2.2.4 TimeUUID Functions

In addition to querying using regular values, there are two functions you can pass in when querying
TimeUUID columns to help make filtering by them easier. Note that these functions don’t actually return
a value, but instruct the cql interpreter to use the functions in it’s query.

class cglengine.query .MinTimeUUID (datetime)
returns the minimum time uuid value possible for the given datetime

14 Chapter 2. Contents:



cqlengine Documentation, Release 0.21.0

class cglengine.query.MaxTimeUUID (datetime)
returns the maximum time uuid value possible for the given datetime

Example

class DataStream(Model) :
time = cqglengine.TimeUUID (primary_key=True)
data = cqglengine.Bytes ()

min_time = datetime (1982, 1, 1)
max_time = datetime (1982, 3, 9)

DataStream.filter (time___gt=cglengine.MinTimeUUID (min_time), time__lt=cglengine.MaxT|imeUUID (max_t

2.2.5 Token Function

Token functon may be used only on special, virtual column pk__token, representing token of partition
key (it also works for composite partition keys). Cassandra orders returned items by value of partition key
token, so using cqlengine.Token we can easy paginate through all table rows.

See http://cassandra.apache.org/doc/cql3/CQL.html#tokenFun

Example

class Items (Model) :
id = cqglengine.Text (primary_key=True)
data = cglengine.Bytes ()

query = Items.objects.all().limit (10)

first_page = list (query);
last = first_page[-1]
next_page = list (query.filter (pk__token__gt=cglengine.Token (last.pk)))

2.2.6 QuerySets are immutable

When calling any method that changes a queryset, the method does not actually change the queryset
object it’s called on, but returns a new queryset object with the attributes of the original queryset, plus the
attributes added in the method call.

Example

#this produces 3 different querysets

#g does not change after it's initial definition
g = Automobiles.objects.filter (year=2012)
tesla2012 = g.filter (manufacturer="'Tesla')
honda2012 = g.filter (manufacturer="'Honda')

2.2.7 Ordering QuerySets
Since Cassandra is essentially a distributed hash table on steroids, the order you get records back in will
not be particularly predictable.
However, you can set a column to order on with the . order_by (column_name) method.

Example

2.2. Making Queries 15


http://cassandra.apache.org/doc/cql3/CQL.html#tokenFun

cqlengine Documentation, Release 0.21.0

#sort ascending

g = Automobiles.objects.all().order_by('year'")
#sort descending

g = Automobiles.objects.all().order_by('-year")

Note: Cassandra only supports ordering on a clustering key. In other words, to support ordering results,
your model must have more than one primary key, and you must order on a primary key, excluding the
first one.

For instance, given our Automobile model, year is the only column we can order on.

2.2.8 Values Lists

There is a special QuerySet’s method . values_1list () - when called, QuerySet returns lists of values
instead of model instances. It may significantly speedup things with lower memory footprint for large
responses. Each tuple contains the value from the respective field passed into the values_list () call
— so the first item is the first field, etc. For example:

items = list (range (20))
random.shuffle (items)
for i in items:

TestModel.create (id=1, clustering_key=1i)

values = list (TestModel.objects.values_list('clustering_key', flat=True))
# (19L, 18L, 17L, 16L, 15L, 14L, 13L, 12L, 11L, 10L, 9L, 8L, 7L, 6L, 5L, 4L, 3L, 201, 1L,
2.2.9 Batch Queries

cqlengine now supports batch queries using the BatchQuery class. Batch queries can be started and

stopped manually, or within a context manager. To add queries to the batch object, you just need to

precede the create/save/delete call with a call to batch, and pass in the batch object.

Batch Query General Use Pattern

You can only create, update, and delete rows with a batch query, attempting to read rows out of the

database with a batch query will fail.

from cglengine import BatchQuery

#using a context manager

with BatchQuery () as b:
now = datetime.now ()
eml = ExampleModel.batch(b) .create (example_type=0, description="1", created_at=now)
em2 = ExampleModel.batch (b) .create (example_type=0, description="2", created_at=now)
em3 = ExampleModel.batch (b) .create (example_type=0, description="3", created_at=now)

# —— or ——

#manually

b = BatchQuery ()

now = datetime.now ()

eml = ExampleModel.batch(b) .create (example_type=0, description="1", created_at=now)

em2 = ExampleModel.batch (b) .create (example_type=0, description="2", created_at=now)

em3 = ExampleModel.batch (b) .create (example_type=0, description="3", created_at=now)

16

Chapter 2. Contents:

OL]



cqlengine Documentation, Release 0.21.0

b.execute ()

# updating in a batch

b = BatchQuery ()

eml.description = "new description”
eml .batch (b) .save ()
em2.description = "another new description”

em2.batch (b) .save ()
b.execute ()

# deleting in a batch

b = BatchQuery ()
ExampleModel.objects (id=some_id) .batch (b) .delete ()
ExampleModel.objects (id=some_1id2) .batch (b) .delete ()
b.execute ()

Typically you will not want the block to execute if an exception occurs inside the with block. However, in
the case that this is desirable, it’s achievable by using the following syntax:

with BatchQuery (execute_on_exception=True) as Db:
LogEntry.batch(b) .create (k=1, wv=1)
mystery_function() # exception thrown in here
LogEntry.batch (b) .create (k=1, v=2) # this code is never reached due to the

excq

ption,

If an exception is thrown somewhere in the block, any statements that have been added to the batch will
still be executed. This is useful for some logging situations.

Batch Query Execution Callbacks
In order to allow secondary tasks to be chained to the end of batch, BatchQuery instances allow callbacks
to be registered with the batch, to be executed immediately after the batch executes.

Multiple callbacks can be attached to same BatchQuery instance, they are executed in the same order that
they are added to the batch.

The callbacks attached to a given batch instance are executed only if the batch executes. If the batch is
used as a context manager and an exception is raised, the queued up callbacks will not be run.

def my_callback (xargs, *xkwargs):
pass

batch = BatchQuery ()

batch.add_callback (my_callback)
batch.add_callback (my_callback, 'positional arg', named_arg='named arg value')

# 1f you need reference to the batch within the callback,
# just trap it in the arguments to be passed to the callback:
batch.add_callback (my_callback, cglengine_batch=batch)

# once the batch executes...
batch.execute ()

# the effect of the above scheduled callbacks will be similar to
my_callback ()

my_callback ('positional arg', named_arg='named arg value')
my_callback (cglengine_batch=batch)

2.2. Making Queries

17

but ar



cqlengine Documentation, Release 0.21.0

Failure in any of the callbacks does not affect the batch’s execution, as the callbacks are started after the
execution of the batch is complete.

Logged vs Unlogged Batches

By default, queries in cqlengine are LOGGED, which carries additional overhead from UNLOGGED. To
explicitly state which batch type to use, simply:

from cqglengine.query import BatchType

with BatchQuery (batch_type=BatchType.Unlogged) as b:
LogEntry.batch(b) .create (k=1, v=1)
LogEntry.batch(b) .create (k=1, v=2)

2.2.10 QuerySet method reference

class cqglengine.query.QuerySet

all ()
Returns a queryset matching all rows

for user in User.objects () .all():
print (user)

batch (batch_object)

Sets the batch object to run the query on. Note that running a select query with a batch object will raise an
exception

consistency (consistency_setting)

Sets the consistency level for the operation. Options may be imported from the top level cglengine
package.

for user in User.objects (id=3) .consistency (ONE) :
print (user)

count ()
Returns the number of matching rows in your QuerySet

print (User.objects () .count ())

filter (**values)
Parameters values — See Retrieving objects with filters
Returns a QuerySet filtered on the keyword arguments
get (**values)
Parameters values — See Retrieving objects with filters

Returns a single object matching the QuerySet. If no objects are matched, a DoesNotExist exception
is raised. If more than one object is found, a MultipleObjectsReturned exception is raised.

user = User.get (id=1)

limit (num)
Limits the number of results returned by Cassandra.

18 Chapter 2. Contents:




cqlengine Documentation, Release 0.21.0

Note that CQL’s default limit is 10,000, so all queries without a limit set explicitly will have an implicit
limit of 10,000

for user in User.objects () .limit (100):

print (user)

order_by (field_name)

Parameters field_name (string) - the name of the field to order on. Note: the field_name
must be a clustering key

Sets the field to order on.

from uuid import uuidl,uuid4

class Comment (Model) :
photo_id = UUID (primary_key=True)
comment_id = TimeUUID (primary_key=True, default=uuidl) # auto becomes clust
comment = Text ()

sync_table (Comment)
u = uuid4 ()

for x in range(5):
Comment .create (photo_id=u, comment="test "

o\°
bl

print ("Normal")
for comment in Comment.objects (photo_id=u) :
print comment.comment_id

print ("Reversed")
for comment in Comment.objects (photo_id=u) .order_by ("-comment_id") :
print comment.comment_id

allow_filtering()
Enables the (usually) unwise practive of querying on a clustering key without also defining a partition key

timestamp (timestamp_or_long_or_datetime)
Allows for custom timestamps to be saved with the record.

ttl (#tl_in_seconds)

Parameters tt1l_in_seconds (int) — time in seconds in which the saved values should
expire
Sets the ttl to run the query query with. Note that running a select query with a ttl value will raise an
exception

update (**values)
Performs an update on the row selected by the queryset. Include values to update in the update like so:

Model .objects (key=n) .update (value="x") ‘

Passing in updates for columns which are not part of the model will raise a ValidationError. Per column
validation will be performed, but instance level validation will not (Model.validate is not called). This is
sometimes referred to as a blind update.

For example:

class User (Model) :
id = Integer (primary_key=True)
name = Text ()

2.2,

Making Queries 19

ering key



cqlengine Documentation, Release 0.21.0

setup(["localhost"], "test")
sync_table (User)

u = User.create(id=1, name="jon")

User.objects (id=1) .update (name="Steve")

# sets name to null
User.objects (id=1) .update (name=None)

The queryset update method also supports blindly adding and removing elements from container columns,
without loading a model instance from Cassandra.

Using the syntax .update(column_name={x, y, z}) will overwrite the contents of the container, like updating
a non container column. However, adding __<operation> to the end of the keyword arg, makes the update
call add or remove items from the collection, without overwriting then entire column.

Given the model below, here are the operations that can be performed on the different container columns:

class Row (Model) :

row_id = columns.Integer (primary_key=True)
set_column = columns.Set (Integer)

list_column = columns.Set (Integer)

map_column = columns.Set (Integer, Integer)

Set
*add: adds the elements of the given set to the column

eremove: removes the elements of the given set to the column

# add elements to a set
Row.objects (row_id=5) .update (set_column__add={6})

# remove elements to a set
Row.objects (row_id=5) .update (set_column__remove={4})

List
*append: appends the elements of the given list to the end of the column

eprepend: prepends the elements of the given list to the beginning of the column

# append items to a 1list
Row.objects (row_id=5) .update (list_column__append=[6, 7])

# prepend items to a list
Row.objects (row_id=5) .update (list_column__prepend=[1, 2])

Map

supdate: adds the given keys/values to the columns, creating new entries if they didn’t exist, and
overwriting old ones if they did

# add items to a map
Row.objects (row_id=5) .update (map_column__update={1: 2, 3: 4})

20

Chapter 2. Contents:




cqlengine Documentation, Release 0.21.0

2.2.11 Per Query Timeouts

By default all queries are executed with the timeout defined in ~cglengine.connection.setup() The examples below
show how to specify a per-query timeout. A timeout is specified in seconds and can be an int, float or None. None
means no timeout.

class Row (Model) :
id = columns.Integer (primary_key=True)
name = columns.Text ()

Fetch all objects with a timeout of 5 seconds

Row.objects () .timeout (5) .all()

Create a single row with a 50ms timeout

Row (id=1, name='Jon') .timeout (0.05) .create()

Delete a single row with no timeout

Row (id=1) .timeout (None) .delete ()

Update a single row with no timeout

Row (1d=1) .timeout (None) .update (name="'Blake")

Batch query timeouts

with BatchQuery (timeout=10) as b:
Row (id=1, name='Jon') .create()

NOTE: You cannot set both timeout and batch at the same time, batch will use the timeout defined in it’s
constructor. Setting the timeout on the model is meaningless and will raise an AssertionError.

2.2.12 Named Tables

Named tables are a way of querying a table without creating an class. They’re useful for querying system tables or
exploring an unfamiliar database.

from cglengine.connection import setup
setup("127.0.0.1", "cglengine_test")

from cglengine.named import NamedTable
user = NamedTable ("cglengine_test", "user")
user.objects ()

user.objects () [0]

# {u'pk': 1, u't': datetime.datetime (2014, 6, 26, 17, 10, 31, 774000)}

2.3 Columns

Users of versions < 0.4, please read this post before upgrading: Breaking Changes

class cglengine.columns.Bytes
Stores arbitrary bytes (no validation), expressed as hexadecimal

2.3. Columns 21



https://groups.google.com/forum/?fromgroups#!topic/cqlengine-users/erkSNe1JwuU

cqlengine Documentation, Release 0.21.0

columns.Bytes ()

class cglengine.columns.Ascii
Stores a US-ASCII character string

columns.Ascii ()

class cglengine.columns.Text
Stores a UTF-8 encoded string

columns.Text ()

options

min_length Sets the minimum length of this string. If this field is not set , and the column is not
a required field, it defaults to O, otherwise 1.

max_length Sets the maximum length of this string. Defaults to None

class cqglengine.columns. Integer
Stores a 32-bit signed integer value

columns. Integer ()

class cqglengine.columns.BigInt
Stores a 64-bit signed long value

columns.BigInt ()

class cglengine.columns.VarInt
Stores an arbitrary-precision integer

columns.VarInt ()

class cglengine.columns.DateTime
Stores a datetime value.

columns.DateTime()

class cglengine.columns.UUID
Stores a type 1 or type 4 UUID.

columns.UUID()

class cglengine.columns.TimeUUID
Stores a UUID value as the cql type ‘timeuuid’

columns.TimeUUID ()

classmethod from_datetime (df)
generates a TimeUUID for the given datetime

Parameters dt (datetime.datetime) — the datetime to create a time uuid from
Returns a time uuid created from the given datetime
Return type uuidl

class cglengine.columns.Boolean
Stores a boolean True or False value

columns.Boolean ()

22 Chapter 2. Contents:



cqlengine Documentation, Release 0.21.0

class cglengine.columns.Float
Stores a floating point value

columns.Float ()

options

double_precision If True, stores a double precision float value, otherwise single precision.
Defaults to True.

class cqlengine.columns.Decimal
Stores a variable precision decimal value

columns.Decimal ()

class cglengine.columns.Counter
Counters can be incremented and decremented

columns.Counter ()

2.3.1 Collection Type Columns

CQLEngine also supports container column types. Each container column requires a column class argu-
ment to specify what type of objects it will hold. The Map column requires 2, one for the key, and the
other for the value

Example

class Person (Model) :

id = columns.UUID (primary_key=True, default=uuid.uuid4)
first_name = columns.Text ()

last_name = columns.Text ()

friends = columns.Set (columns.Text)

enemies = columns.Set (columns.Text)

todo_1list = columns.List (columns.Text)

birthdays = columns.Map (columns.Text, columns.DateTime)

class cqglengine.columns. Set
Stores a set of unordered, unique values. Available only with Cassandra 1.2 and above

columns. Set (value_type)

options
value_type The type of objects the set will contain

strict If True, adding this column will raise an exception during save if the value is not a python
set instance. If False, it will attempt to coerce the value to a set. Defaults to True.

class cglengine.columns.List
Stores a list of ordered values. Available only with Cassandra 1.2 and above

columns.List (value_type)

options
value_type The type of objects the set will contain

class cqlengine.columns.Map
Stores a map (dictionary) collection, available only with Cassandra 1.2 and above

2.3. Columns 23



cqlengine Documentation, Release 0.21.0

‘ columns.Map (key_type, value_type)

options
key_type The type of the map keys

value_type The type of the map values

Column Options

Each column can be defined with optional arguments to modify the way they behave. While some column
types may define additional column options, these are the options that are available on all columns:

BaseColumn.primary key
If True, this column is created as a primary key field. A model can have multiple primary keys.
Defaults to False.

In CQL, there are 2 types of primary keys: partition keys and clustering keys. As with CQOL, the first
primary key is the partition key, and all others are clustering keys, unless partition keys are specified
manually using BaseColumn.partition_key

BaseColumn.partition_key
If True, this column is created as partition primary key. There may be many partition keys defined,
forming a composite partition key

BaseColumn.index
If True, an index will be created for this column. Defaults to False.

Note: Indexes can only be created on models with one primary key

BaseColumn.db_field
Explicitly sets the name of the column in the database table. If this is left blank, the column name
will be the same as the name of the column attribute. Defaults to None.

BaseColumn.default
The default value for this column. If a model instance is saved without a value for this column
having been defined, the default value will be used. This can be either a value or a callable object
(ie: datetime.now is a valid default argument).

BaseColumn.required
If True, this model cannot be saved without a value defined for this column. Defaults to False.
Primary key fields cannot have their required fields set to False.

BaseColumn.clustering order
Defines CLUSTERING ORDER for this column (valid choices are “asc” (de-
fault) or “desc”). It may be specified only for clustering primary keys - more:
http://www.datastax.com/docs/1.2/cql_cli/cql/CREATE_TABLE#using-clustering-order

2.4 Connection

Users of versions < 0.4, please read this post before upgrading: Breaking Changes The setup function in
cqlengine.connection records the Cassandra servers to connect to. If there is a problem with one of the servers,
cqlengine will try to connect to each of the other connections before failing.

cglengine.connection.setup (hosts)

Parameters

24 Chapter 2. Contents:


http://www.datastax.com/docs/1.2/cql_cli/cql/CREATE_TABLE#using-clustering-order
https://groups.google.com/forum/?fromgroups#!topic/cqlengine-users/erkSNe1JwuU

cqlengine Documentation, Release 0.21.0

* hosts (1ist) - list of hosts, strings in the <hostname>:<port>, or just <hostname>

* default_keyspace (str) — keyspace to default to

* consistency (int) — the consistency level of the connection, defaults to ‘ONE’
# see http://datastax.github.io/python-driver/api/cassandra.html#cassandra.ConsistencyLevel
Records the hosts and connects to one of them

See the example at Getting Started

2.5 Managing Schemas

Users of versions < 0.4, please read this post before upgrading: Breaking Changes Once a connection has been
made to Cassandra, you can use the functions in cqlengine.management to create and delete keyspaces, as well
as create and delete tables for defined models

cglengine.management .create_keyspace (name)
Parameters name (string)—the keyspace name to create
creates a keyspace with the given name
cglengine.management .delete_keyspace (name)
Parameters name (string) —the keyspace name to delete
deletes the keyspace with the given name
cglengine.management .sync_table (model)
Parameters model (Model) —the Model class to make a table with
syncs a python model to cassandra (creates & alters)
cglengine.management .drop_table (model)
Parameters model (Model) — the Model class to delete a column family for
deletes the CQL table for the given model

See the example at Getting Started

2.6 External Resources

2.6.1 Video Tutorials

Introduction to CQLEngine: https://www.youtube.com/watch?v=zrbQcPNMbB0
TimeUUID and Table Polymorphism: https://www.youtube.com/watch?v=cIXN9pnakvI

2.6.2 Blog Posts

Blake Eggleston on Table Polymorphism in the .8 release: http://blakeeggleston.com/cqlengine-08-released.html

2.5. Managing Schemas 25


http://datastax.github.io/python-driver/api/cassandra.html#cassandra.ConsistencyLevel
https://groups.google.com/forum/?fromgroups#!topic/cqlengine-users/erkSNe1JwuU
https://www.youtube.com/watch?v=zrbQcPNMbB0
https://www.youtube.com/watch?v=clXN9pnakvI
http://blakeeggleston.com/cqlengine-08-released.html

cqglengine Documentation, Release 0.21.0

2.7 Related Projects

2.7.1 Cassandra Native Driver

* Docs: http://datastax.github.io/python-driver/api/index.html
* Github: https://github.com/datastax/python-driver
* Pypi: https://pypi.python.org/pypi/cassandra-driver/2.1.0

2.7.2 Sphinx Contrib Module

* Github https://github.com/dokai/sphinxcontrib-cqlengine

2.7.3 Django Integration
¢ Github https://cqlengine.readthedocs.org
2.8 Third party integrations

2.8.1 Celery

Here’s how, in substance, CQLengine can be plugged to Celery:

from celery import Celery
from celery.signals import worker_process_init, beat_init
from cglengine import connection
from cglengine.connection import (
cluster as cgl_cluster, session as cgl_session)

def cassandra_init () :
"rn o Tnitialize a clean Cassandra connection. """
if cgl_cluster is not None:
cgl_cluster.shutdown ()
if cgl_session is not None:
cgl_session.shutdown ()
connection.setup ()

# Initialize worker context for both standard and periodic tasks.
worker_process_init.connect (cassandra_init)

beat_init.connect (cassandra_init)

app = Celery()

For more details, see issue #237.

2.8.2 uWsaGl

This is the code required for proper connection handling of CQLengine for a uWSGI-run application:

26 Chapter 2

. Contents:



http://datastax.github.io/python-driver/api/index.html
https://github.com/datastax/python-driver
https://pypi.python.org/pypi/cassandra-driver/2.1.0
https://github.com/dokai/sphinxcontrib-cqlengine
https://cqlengine.readthedocs.org
http://celery.readthedocs.org/
https://github.com/cqlengine/cqlengine/issues/237
https://uwsgi-docs.readthedocs.org

cqlengine Documentation, Release 0.21.0

from cglengine import connection
from cglengine.connection import (
cluster as cqgl_cluster, session as cqgl_session)

try:
from uwsgidecorators import postfork
except ImportError:
# We're not in a uWSGI context, no need to hook Cassandra session
# initialization to the postfork event.
pass
else:
@postfork
def cassandra_init () :
"rroInitialize a new Cassandra session in the context.

Ensures that a new session 1s returned for every new request.
wn
if cgl_cluster is not None:
cgl_cluster.shutdown ()
if cgl_session is not None:
cgl_session.shutdown ()
connection.setup ()

2.9 Development

2.9.1 Travis CI
Tests are run using Travis CI using a Matrix to test different Cassandra and Python versions. It is located here:
https://travis-ci.org/cqlengine/cqlengine
Python versions:
e 2.7
* 34
Cassandra vesions:
* 1.2 (protocol_version 1)
* 2.0 (protocol_version 2)

e 2.1 (upcoming, protocol_version 3)

2.9.2 Pull Requests

Only Pull Requests that have passed the entire matrix will be considered for merge into the main codebase.

Please see the contributing guidelines: https://github.com/cqlengine/cqlengine/blob/master/CONTRIBUTING.md

2.9.3 Testing Locally

Before testing, you’ll need to set an environment variable to the version of Cassandra that’s being tested. The version
cooresponds to the <Major><Minor> release, so for example if you're testing against Cassandra 2.1, you’d set the
following:

2.9. Development 27


https://travis-ci.org/cqlengine/cqlengine
https://github.com/cqlengine/cqlengine/blob/master/CONTRIBUTING.md

cqlengine Documentation, Release 0.21.0

‘ export CASSANDRA_VERSION=20

At the command line, execute:

‘bin/test.py

This is a wrapper for nose that also sets up the database connection.

2.10 Frequently Asked Questions

2.10.1 Q: Why don’t updates work correctly on models instantiated as
Model(field=blah, field2=blah2)?

A: The recommended way to create new rows is with the models .create method. The values passed into a model’s
init method are interpreted by the model as the values as they were read from a row. This allows the model to “know”
which rows have changed since the row was read out of cassandra, and create suitable update statements.

2.10.2 Q: How to preserve ordering in batch query?
A: Statement Ordering is not supported by CQL3 batches. Therefore, once cassandra needs resolving con-
flict(Updating the same column in one batch), The algorithm below would be used.

* If timestamps are different, pick the column with the largest timestamp (the value being a regular column or a
tombstone)

* If timestamps are the same, and one of the columns in a tombstone (‘null’) - pick the tombstone
* If timestamps are the same, and none of the columns are tombstones, pick the column with the largest value

Below is an example to show this scenario.

class MyMode (Model) :

id = columns.Integer (primary_key=True)
count = columns.Integer ()
text = columns.Text ()

with BatchQuery () as b:
MyModel .batch (b) .create (id=1, count=2, text='123")
MyModel .batch (b) .create (id=1, count=3, text='111")

assert MyModel.objects (id=1) .first () .count ==
assert MyModel.objects (id=1).first () .text == '123"'

The largest value of count is 3, and the largest value of text would be ‘123’.

The workaround is applying timestamp to each statement, then Cassandra would resolve to the statement with the
lastest timestamp.

with BatchQuery () as b:
MyModel .timestamp (datetime.now()) .batch (b) .create (id=1, count=2, text='123")
MyModel.timestamp (datetime.now () ) .batch (b) .create (id=1, count=3, text='111")

assert MyModel.objects (id=1).first () .count == 3
assert MyModel.objects (id=1l) .first () .text == "111"

28 Chapter 2. Contents:



CHAPTER 3

Getting Started

#first, define a model
from cglengine import columns
from cglengine import Model

class ExampleModel (Model) :

example_id = columns.UUID (primary_key=True, default=uuid.uuid4)
example_type = columns.Integer (index=True)

created_at = columns.DateTime ()

description = columns.Text (required=False)

#next, setup the connection to your cassandra server(s)...
>>> from cglengine import connection

# see http://datastax.github.io/python-driver/api/cassandra/cluster.html for option
# the list of hosts will be passed to create a Cluster () instance
>>> connection.setup(['127.0.0.1"], "cglengine™)

# 1f you're connecting to a 1.2 cluster
>>> connection.setup(['127.0.0.1"], "cglengine", protocol_version=1)

#...and create your CQL table
>>> from cglengine.management import sync_table

>>> sync_table (ExampleModel)

#now we can create some rows:

>>> eml = ExampleModel.create (example_type=0, description="examplel", created_at=da
>>> em2 = ExampleModel.create (example_type=0, description="example2", created_at=dq
>>> em3 = ExampleModel.create (example_type=0, description="example3", created_at=da
>>> emd4 = ExampleModel.create (example_type=0, description="exampled", created_at=da

example_type=1, description="example5", created_at=da
example_type=1, description="examplet", created_at=d4q
example_type=1, description="example7", created_at=dd
example_type=1, description="example8", created_at=dag

>>> emb5 = ExampleModel.create
>>> em6 = ExampleModel.create
>>> em7 = ExampleModel.create
>>> em8 = ExampleModel.create

#and now we can run some queries against our table
>>> ExampleModel.objects.count ()

8

>>> g = ExampleModel.objects (example_type=1)

>>> qg.count ()

4

>>> for instance in g:

>>> print instance.description

exampleb

tetime

29

.now ()
tetime.
tetime.
tetime.
tetime.
tetime.
tetime.
tetime.

now ()
now ()
now ()
now ()
now ()
now ()
now ()



cqlengine Documentation, Release 0.21.0

example6
example?
example8

#here we are applying additional filtering to an existing query
#query objects are immutable, so calling filter returns a new
#query object

>>> g2 = g.filter (example_id=em5.example_id)

>>> g2.count ()

1

>>> for instance in g2:

>>> print instance.description
exampleb

Report a Bug
Users Mailing List

30 Chapter 3. Getting Started



https://github.com/cqlengine/cqlengine/issues
https://groups.google.com/forum/?fromgroups#!forum/cqlengine-users

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

31



cqlengine Documentation, Release 0.21.0

32 Chapter 4. Indices and tables



Python Module Index

C

cglengine.
.connection, 12

cglengine

cglengine.
cglengine.
cglengine.

columns, 21

management, 25
models, 5
query, 12

33



cqlengine Documentation, Release 0.21.0

34 Python Module Index



Index

Symbols

__abstract__ (cqlengine.models.Model attribute), 8
__bloom_filter_fp_chance (cqlengine.models.Model at-
tribute), 10
__caching__ (cqlengine.models.Model attribute), 10
__comment__ (cqlengine.models.Model attribute), 10
__compaction_bucket_high__ (cqlengine.models.Model
attribute), 11
__compaction_bucket_low__
attribute), 11
__compaction_max_compaction_threshold__
(cqlengine.models.Model attribute), 11
__compaction_min_compaction_threshold__
(cqlengine.models.Model attribute), 11
__compaction_min_sstable_size__
(cqlengine.models.Model attribute), 11
__compaction_sstable_size_in_mb__
(cqlengine.models.Model attribute), 11
__compaction_tombstone_compaction_interval__
(cqlengine.models.Model attribute), 11
__compaction_tombstone_threshold__
(cqlengine.models.Model attribute), 11
__dclocal_read_repair_chance__
(cqlengine.models.Model attribute), 10
__default_time_to_live__ (cqlengine.models.Model at-
tribute), 10
__default_ttl__ (cqlengine.models.Model attribute), 8
__gc_grace_seconds__  (cqlengine.models.Model at-

(cqlengine.models.Model

tribute), 10
__index_interval__ (cqlengine.models.Model attribute),
10

__keyspace__ (cqlengine.models.Model attribute), 8
__memtable_flush_period_in_ms__
(cqlengine.models.Model attribute), 10
__populate_io_cache_on_flush__
(cqlengine.models.Model attribute), 10
__read_repair_chance__ (cqlengine.models.Model
attribute), 10
__replicate_on_write__
tribute), 10

(cqlengine.models.Model at-

__table_name__ (cqlengine.models.Model attribute), 8

A

all() (cqlengine.query.QuerySet method), 18
allow_filtering() (cqlengine.query.QuerySet method), 19
Ascii (class in cglengine.columns), 22

B

batch() (cqlengine.models.Model method), 7
batch() (cqlengine.query.QuerySet method), 18
Biglnt (class in cqlengine.columns), 22
Boolean (class in cqlengine.columns), 22
Bytes (class in cqlengine.columns), 21

C

clustering_order
attribute), 24

consistency() (cqlengine.query.QuerySet method), 18

count() (cqlengine.query.QuerySet method), 18

Counter (class in cqlengine.columns), 23

cqlengine.columns (module), 21

cqglengine.connection (module), 5, 12, 24, 25

cqlengine.management (module), 25

cqlengine.models (module), 5

cqlengine.query (module), 12

create_keyspace() (in module cqlengine.management), 25

D

DateTime (class in cqlengine.columns), 22

db_field (cglengine.columns.BaseColumn attribute), 24
Decimal (class in cqlengine.columns), 23

default (cqlengine.columns.BaseColumn attribute), 24
delete() (cqlengine.models.Model method), 7
delete_keyspace() (in module cqlengine.management), 25
drop_table() (in module cqlengine.management), 25

F

filter() (cqlengine.query.QuerySet method), 18
Float (class in cqlengine.columns), 22

(cqlengine.columns.BaseColumn

35



cqlengine Documentation, Release 0.21.0

from_datetime() (cqlengine.columns. TimeUUID class U

method), 22 update() (cqlengine.models.Model method), 8
G update() (cqlengine.query.QuerySet method), 19
UUID (class in cqlengine.columns), 22
get() (cqlengine.query.QuerySet method), 18
get_changed_columns() (cqlengine.models.Model Vv

method), 8 Varlnt (class in cqlengine.columns), 22

if_not_exists() (cqlengine.models.Model method), 8
iff() (cqlengine.models.Model method), 8

index (cqlengine.columns.BaseColumn attribute), 24
Integer (class in cqlengine.columns), 22

L

limit() (cqlengine.query.QuerySet method), 18
List (class in cqlengine.columns), 23

M

Map (class in cqlengine.columns), 23
MaxTimeUUID (class in cqlengine.query), 14
MinTimeUUID (class in cqlengine.query), 14
Model (class in cqlengine.models), 7

O

order_by() (cqlengine.query.QuerySet method), 19

P

partition_key (cqlengine.columns.BaseColumn attribute),
24

primary_key (cqlengine.columns.BaseColumn attribute),
24

Q

QuerySet (class in cqlengine.query), 18

R

required (cqlengine.columns.BaseColumn attribute), 24

S

save() (cqlengine.models.Model method), 7

Set (class in cqlengine.columns), 23

setup() (in module cqlengine.connection), 24
sync_table() (in module cqlengine.management), 25

T

Text (class in cqlengine.columns), 22

timestamp() (cqlengine.models.Model method), 7
timestamp() (cqlengine.query.QuerySet method), 19
TimeUUID (class in cqlengine.columns), 22

ttl() (cqlengine.models.Model method), 8

ttl() (cqlengine.query.QuerySet method), 19

36 Index



	Download
	Contents:
	Models
	Making Queries
	Columns
	Connection
	Managing Schemas
	External Resources
	Related Projects
	Third party integrations
	Development
	Frequently Asked Questions

	Getting Started
	Indices and tables
	Python Module Index

